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This paper deals with optimizing Simple Exponential Smoothing for time series 
forecasting in supply chain management, particularly in the transport and 
automotive sectors. This paper attempts to enhance the accuracy of the forecast by 

estimating an optimal smoothing constant α with the Mean Squared Error as the 
objective function. This optimization exercise will be done using MATLAB's 
fminsearch function. Indeed, results realize substantial improvements in the 
accuracy of the forecast, validated using different error metrics and graphical 
representations. 

 

INTRODUCTION 
Accurate forecasting is an integral component 

in diverse fields, particularly in the supply chain 
function for the transport and automobile industries 
(Rao et al., 2023; Syntetos et al., 2016). For the two 
industries, proper forecasting of spare part demand, 
efficient management of inventory, and on-time 
delivery can greatly enhance operational efficiency 
while reducing associated costs (Hajej et al., 2014). 
By minimizing the instances of stockouts and 
overstock, optimizing the supply chain, and 
eventually enhancing customer satisfaction, 
accurate forecasting offers a hopeful prospect of 
significant cost savings (El-Wahab et al., 2021; 
Plakandaras et al., 2019). 

In the automotive industry, spare parts 
availability is critical to maintaining vehicle 
performance and reducing downtime. Accurate 
demand forecasting enables the manufacturer or 
supplier to plan the amount required in the future 
and schedule production and distribution 
accordingly (Maistor et al., 2016). It is also vital for 
planning maintenance, fleet management, and 
running services without disruption in the transport 
sector (Abdelati et al., 2024; Liu et al., 2018). 

One of the techniques used in business for time 
series prediction is exponential smoothing. 

Exponential smoothing methods give past 
observations exponentially decreasing weights 
(Cetin & Yavuz, 2021; Svetunkov et al., 2022; Woo 
et al., 2022); hence, more recent data points are 
more influential in the forecast than older 
observations. This method is useful in making a 
short-term forecast, especially when there is little 
trend and seasonality in the data (Gardner Jr, 2006; 
Woo et al., 2022). 

The paper focuses on optimizing Simple 
Exponential Smoothing (SES) for time series 
forecasting. SES is the core method in exponential 
smoothing; this technique is appropriate for time 
series data with no trends or seasonality. The most 
important parameter in SES, and indeed the 

smoothing constant α, is the proportion of its 
weight on its latest observation. Therefore, selecting 

an appropriate value for α is very important to the 
accuracy of the forecast (Latif & Herdiansyah, 
2022; Takeyasu et al., 2009). 

The objective of the research is to establish the 
optimal smoothing constant of SES to obtain 
accurate forecasts that enhance supply chain 
management. This will involve the development of 
a methodology to optimize the smoothing constant 
using Mean Squared Error as an objective function, 
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and then the engagement of the MATLAB function 
fminsearch in the optimization process (Goodarzi et 
al., 2014; Jianhua et al., 2010). The methodology is 
also applied to time series data relevant to the 
supply chains of the transport and automotive 
industries, demonstrating its practical implications 
and enlightening the audience about its potential 
benefits in this field. Therefore, this paper aims to 
provide a robust approach toward exponential 
smoothing parameter optimization in supply chain 
forecasting, to improve the precision and reliability 
of forecasts within the transport and automotive 
sectors. 

Forecasting methods have changed 
tremendously since ancient times. Many techniques 
have been formulated to cater to the various needs 
of different industries (Armstrong, 2001; Fildes, 
1992). In the supply chain management area, more 
precisely in the transport and auto industries, correct 
forecasting is an essential element of its 
optimization to ensure the correct and timely 
delivery of vital components (Abdelati, 2024). 

Exponential smoothing techniques are the 
most well-known prediction methods because they 
are simple and efficient, especially where no 
apparent trend or seasonal pattern is established in 
the time series data. In exponential smoothing 
methods, weights are assigned, exponentially 
decreasing over time with the observations (Ahmed 
& Kumar, 2023; Smyl, 2020), thereby giving more 
weight to recent observations. Hence, this approach 
brings out their high suitability for short-term 
forecasting (Gardner Jr, 1985; Nurhamidah et al., 
2020). 

Simple Exponential Smoothing is one of the 
base techniques in exponential smoothing. It works 
best with datasets that contain no discernible trend 
or seasonal pattern (Yonar et al., 2020). Within 
SES, there is only one parameter: the smoothing 
constant, which controls how much weight to give 
to its most recent observation (Fahrudin et al., 2021; 
Sulandari et al., 2021). Choosing an appropriate 

value for α is very important because it controls 
how responsive the forecast will be to recent 

changes in the data. The higher the value of α, the 
more responsive the forecast will be; the lower, the 
smoother (Mathai et al., 2016; Zellner et al., 2021). 

Holt's Linear Trend Model is simply an 
extension of the SES method; it adds a trend 

component and is, therefore, appropriate when the 
dataset linearly trends (Nurhamidah et al., 2020). It 
uses two smoothing constants—one for the level 
and another for the trend. By manipulating these 
parameters, it should be able to adequately capture 
and forecast a linear trend in the data. 

The Holt-Winters Seasonal model is an 
extension of Holt's linear trend model, including 
seasonality. This model involves level, trend, and 
seasonality—each with its smoothing constant—
and comes in handy when dealing with periodic 
time series data containing a regular seasonal 
pattern. Hence, almost all industries requiring 
seasonal forecasting apply it (Almazrouee et al., 
2020; Hanzák, 2012; Wang et al., 2017). 

Previous work has examined the optimal 
choice of smoothing constants within exponential 
techniques. Literature resorts to various ways of 
finding the optimal parameter values by minimizing 
Mean Squared Error, Mean Absolute Error, and 
Mean Absolute Percentage Error, among other 
forecast error metrics (Xie et al., 2020). 
Optimization of the smoothing constants is very 
important to enhance the accuracy of the forecasts 
and ensure well-tuned models specific to the 
particular characteristics of the data. 

Demand forecasting (Abdelwali & Abdelati, 
2024), in the context of supply chain management, 
assumes a significant dimension for the adequate 
flow of goods and services in the transportation and 
automotive industries. Proper demand forecasting 
facilitates optimum inventory, lead time reduction, 
and related costs of stockout and overstock 
situations. For instance, in the case of car 
manufacture, an accurate forecast of the demand for 
spare parts would help maintain critical components 
in stock while simultaneously ensuring reduced 
vehicle idle time. The transport sector should have 
accurate forecasting for scheduling maintenance, 
fleet management, and planning smooth operations. 

Different studies have shown the Impact of 
accurate forecasts in such industries. For example, 
Timmer et al. (Timmer et al., 2015) illustrated an 
application of the World Input-Output Database for 
automotive production worldwide, showing how 
intertwined the automotive supply chain is. 
Waldschmidt et al. (Waldschmidt et al., 2021) 
presented the current state and future developments 
of automotive radar systems. They stated that exact 
forecasting in the production and launching of 
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complicated automotive technologies has become 
necessary. Moreover, Schmuch et al. (Schmuch et 
al., 2018) surveyed the performance and cost of 
materials for lithium-based rechargeable automotive 
batteries, noting that accurate forecasting is 
important to manage the supply chain for 
technology as complex as advanced battery 
technologies (Alardhi et al.). 

The literature shows that exponential 
smoothing techniques, with SES at the forefront, 
make excellent tools in time series forecasting in 
supply chain management. These methods can be 
optimized for accuracy further by optimizing their 
smoothing constants. In light of this, the research 
puts forward a proposed extension of existing 
knowledge by developing a methodology for 
optimizing the smoothing constant under SES while 
applying it to real-time series data related to the 
transport and automotive industries. 

 

METHODS 
The research focuses on optimizing SES in 

time series forecasting, particularly supply chain 
management in transportation and the automotive 
industry. Simple Exponential Smoothing is the most 
commonly used approach due to its simplicity and 
effectiveness in handling data that does not trend or 
season. The following section will detail the SES 
method, the role of the smoothing constant therein, 
and how its optimum value can be found. Simple 
exponential smoothing operates based on the 
principle that past observations are assigned 
exponentially decreasing weights. This means that 
the approach gives more recent observations a more 
significant influence on the forecast than older 
observations. The formula for SES is given by 
(Hodson, 2022; Purba et al., 2021): 

Ft = α At−1 + (1−α) Ft−1 
where: 

Ft  is the forecast for time t 

At−1 is the actual value at time t−1 

Ft−1 is the forecast for time t−1 

α is the smoothing constant (0 < α < 1). 

The smoothing constant α has a role in 
determining how much weight to put on the most 
recent observation (Storath & Weinmann, 2024; 

Utami et al., 2024). The larger the value of α, the 
more responsive the forecast will be to recent 
changes in the data; the smaller the value, the 

smoother the forecast will be and, thus, less 
responsive to short-term fluctuations. Thus, an 

appropriate value of α is vital for accurate forecasts 
(Dhali et al.). 
Solution Algorithm 

In this research, the mean squared error is used 
as the objective function to be minimized to 
determine the optimum value of the smoothing 
constant. The mean squared error is the average of 
the squares of the differences between the actual 
and the forecasted values. Mathematically, it is 
expressed as (Karunasingha, 2022; Mathai et al., 
2016): 

MSE= 
 

 
∑  (     )

  
    

Where: 
n is the number of observations 
At is the actual value at time t 
Ft is the forecasted value at time t. 

The goal will be to find a value of α that 
minimizes the MSE so that the most accurate 
forecasts are obtained. To do this, we will use the 
MATLAB function fminsearch (Albaghdadi et al., 
2021; Pandey, 2023), which enables unconstrained 
optimization using the Nelder-Mead simplex 
algorithm (Gavin, 2023; Lee et al., 2020). 
Solution Algorithm Steps 
1. Time Series Input: 

Take the time series data and read it as a 
numeric vector. 

2. Objective Function: 
Define an anonymous function to calculate the 
Mean Squared Error (MSE) for a given value of 

the smoothing constant α. 

3. Initial Guess for α: 
Specify an initial guess for the smoothing 

constant α, for example, 0.5. 
4. Optimization Using fminsearch: 

Apply MATLAB's fminsearch function to 

determine the value of α that results in the 
smallest possible MSE. The fminsearch 

function iteratively changes α to minimize the 
MSE and converges to the optimal value. 

5. Calculate Forecasts: 
Implement the SES formula to generate the 

forecasts using this optimal α. 
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6. Performance Check: 
Compute the Mean Squared Error, Mean 
Absolute Error, and Mean Absolute Percentage 
Error to evaluate the accuracy of your forecast. 

7. Display Results: 

Print out the value of α that is optimal and its 
corresponding performance measures. 

8. Plotting: 
Points Plot graphs of actual versus forecasted 
values and residuals or actual–forecasted 
values. 

 

 
 

Implementation 
This section implements the above approach to 

find an optimal value of the smoothing constant for 
SES in MATLAB. It is treated as follows: It takes 
user input of time series data, defines an objective 
function that will be optimized, and uses the 

fminsearch function to find the optimal smoothing 
constant. 
1. Input Time Series Data: 

- Request the user to provide a time series. 
- Assure that the data is a valid numeric vector. 

 

 
 

2. Define the Objective Function: 
Write the objective function as an anonymous 

function in MATLAB to find the MSE for a given 

value of the smoothing constant α. 
 

3. Initial Guess for α: 
Provide the initial guess for the smoothing 

constant α. Assume the initial guess to be 0.5. 
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4. Optimization Using fminsearch: 

Employ the function fminsearch to optimize α 
such that MSE is minimum. The function 

fminsearch uses the Nelder-Mead simplex for 
optimization. It is an unconstrained nonlinear 
optimization technique. 

 
5. Output Optimal α: 

Following the optimization process, output the 

optimized value for α. 

 

6. Compute Mean Square Error (MSE 
An MSE is computed next in a nested function 

computeMSE, which applies the SES formula to 
generate the forecast and compute the errors 
between the actual and the forecasted values. 

   
The methodology will be applied here to 

determine the best smoothing constant for SES to 
obtain a better forecast. The approach will be 
applied to time series data important to supply chain 
management in the transport and automotive 
industries, showing its practical implications. 

 

RESULTS AND DISCUSSION 
Application of the SES technique in MATLAB 

has yielded some useful results regarding the value 
of the optimal smoothing constant that will produce 
an accurate forecast. This section presents the 
results by comparing the accuracy of the predictions 
made using different smoothing constants, followed 
by graphical presentations of the actual and 
forecasted observations. Run the optimization 
process using the fminsearch function to get the 

optimum value for the smoothing constant, α. This 

is the α that ensures that the Mean Squared Error of 
the forecasts gets as close to the actual values as 
possible. The result is shown below: 

 

To check the validity of this optimized 
smoothing constant value, we compared forecast 

accuracy with different values of α. The error 
metrics used in this study are Mean Squared Error, 
Mean Absolute Error, and Mean Absolute 
Percentage Error. Such metrics ensure 
comprehensiveness in evaluating the forecast's 
performance. Table 1 shows the comparison of 
forecast accuracy using different values of the 
smoothing constant. 
Table 1 Comparison of forecast accuracy for 

different values of α 

Smoothing Constant (α) MSE MAE MAPE 

Optimal α (0.65) 0.025 0.123 2.45% 

0.3 0.045 0.156 3.21% 
0.8 0.035 0.142 2.85% 

As shown in the table, the optimal smoothing 

constant α returned the lowest MSE, MAE, and 
MAPE, which represents very good forecast 
accuracy compared to the rest. 
 
 
 
 



Indonesian Journal of Innovation and Applied Sciences (IJIAS), 4 (3), 247-256 

252 
 

Graphical Representations 
Time series plot 

The blue line indicates the actual values of the 
time series data, while the red line refers to the 

forecasted values using the optimal α. One can 

notice how these two lines are very close, indicating 
that the accuracy of the forecasts is high. Figure 1 
illustrates the time series plot comparing the actual 
values with the forecasted values using the optimal 

α. 

 
Figure 1 Time Series Plot 
Residual plot 

The residual plot describes the deviations of 
the actual values from the forecasted values over 
time. Ideally, residuals should be randomly thrown 

around zero, meaning that the model has captured 
the underlying pattern in the data. Figure 2 shows 
the residual plot, which displays the differences 
between the actual and forecasted values over time. 
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Figure 2 Residual Plot 

The results of this study underscore the 
importance of optimizing the smoothing constant in 
Simple Exponential Smoothing (SES) for accurate 
time series forecasting. The optimized smoothing 
constant identified through the minimization of 
Mean Squared Error (MSE) has proven to 
significantly enhance forecast accuracy, particularly 
in the context of supply chain management for the 
transportation and automotive industries. 
Interpretation of the Results 

The optimization process yielded a smoothing 

constant α that minimizes the forecast errors, as 
evidenced by the lower values of MSE, Mean 
Absolute Error (MAE), and Mean Absolute 
Percentage Error (MAPE) compared to other tested 

values. This optimal α ensures that the forecasts are 
responsive to recent changes and stable enough to 
provide reliable predictions. The close alignment 
between the actual and forecasted values, as 
illustrated in the graphical representations, confirms 
the high accuracy of the forecasts. 

Significance of the Findings 
Accurately forecasting time series data is 

crucial for effective supply chain management. In 
the automotive industry, precise demand forecasting 
for spare parts can prevent stockouts and reduce 
excess inventory, leading to cost savings and 
improved customer satisfaction. Similarly, in the 
transportation sector, accurate forecasting enables 
better scheduling of maintenance activities and 
efficient management of fleet operations. The 
optimized smoothing constant provides a robust 
approach to SES, making it a valuable tool for 

practitioners in these industries. By fine-tuning α, 
companies can achieve more accurate forecasts, 
leading to better decision-making and enhanced 
operational efficiency. 
Comparison with Other Methods 

While SES is effective for datasets without 
clear trends or seasonal patterns, other methods, 
such as Holt’s Linear Trend Model and the Holt-
Winters Seasonal Model, are more suitable for data 
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with trends and seasonality. Holt’s model extends 
SES by incorporating a trend component, while the 
Holt-Winters model adds seasonality to the mix. 
These models use additional smoothing constants to 
capture the trend and seasonal components. 
Compared to these methods, SES with an optimized 
smoothing constant offers simplicity and ease of 
implementation. However, more complex models 
might provide better accuracy for datasets with 
significant trends or seasonal patterns. Therefore, 
the choice of method should be guided by the 
specific characteristics of the forecasted data. 
Limitations of the Study 

Despite the promising results, this study has 
several limitations. First, the optimization of the 
smoothing constant was performed using a specific 
dataset relevant to supply chain management in the 
transportation and automotive industries. The 
findings may not generalize to other datasets with 
different characteristics. Second, while effective for 
non-seasonal data, the SES method may perform 
poorly for datasets with pronounced trends or 
seasonality. More advanced methods like Holt’s 
Linear Trend Model or the Holt-Winters Seasonal 
Model may be required in such cases. Finally, the 

initial guess for α and the optimization process 
using MATLAB’s fminsearch function is sensitive 
to the starting conditions and the nature of the data. 
Different initial guesses or optimization algorithms 
might yield different results. 
Practical Implications and Future Research 

The practical implications of this study are 
significant for supply chain management in the 
transportation and automotive industries. By 
optimizing the smoothing constant, companies can 
achieve more accurate forecasts, leading to 
improved inventory management, reduced lead 
times, and enhanced operational efficiency. Future 
research could extend this study by exploring the 
optimization of smoothing constants for more 
complex exponential smoothing models, such as 
Holt’s and Holt-Winter. Additionally, applying the 
methodology to a broader range of datasets from 
different industries could help validate the 
generalizability of the findings. Exploring other 
optimization techniques and comparing their 
performance with fminsearch could also provide 
deeper insights into the robustness of the 
optimization process. 

 

CONCLUSION 
This paper demonstrates how optimizing the 

smoothing constant in Simple Exponential 
Smoothing allows for effective time series 
forecasting in supply chain management, 
particularly in the transportation and automobile 
industries. The optimum smoothing constant was 
found by minimizing the Mean Squared Error using 
MATLAB's fminsearch function, which led to a 
significant improvement in forecast accuracy. 

The results support the importance of accurate 
forecasting inefficient supply chain management 
and indicate the practical implications of an 
optimized smoothing constant. This paper's 
methodology should be extended to more complex 
models and different datasets in the future to ensure 
broader applicability and improved forecasting 
performance across various industries. 
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